

The Iterative Science and Engineering

Instructional Model

Nancy Songer, University of Utah Julia E. Calabrese, University of Utah Holly Cordner, University of Utah Daniel Kalani Aina Jr., University of Utah

ABSTRACT

Science is a multidimensional endeavor that requires deep engagement with phenomena. Science, Technology, Engineering, and Mathematics (STEM) discoveries often advance through a fluid and messy process that includes iterations of science investigation, engineering design, and interdisciplinary collaboration. In contrast, most pre-college STEM instructional programs do not foster experiences that promote deep engagement with phenomena through iterations of science investigation, engineering design and collective feedback and sharing with others, including key stakeholders. This poster presents the Iterative Science and Engineering (ISE) instructional model and student learning outcomes when an ISE instructional unit was implemented in nine secondary classrooms.

WHAT?

The ISE is an instructional model that interweaves phenomenabased 3D science investigation with 3D engineering design.

Engage Explore Educate Engineer

WHY?

Recent research studies provide evidence that instructional materials and pedagogical approaches that engage students in science investigations or engineering design led to deeper conceptual understanding of scientific phenomena. Specifically, instructional materials that guide students to make sense of phenomena through three-dimensional (3D) science and engineering performances (NRC, 2012) and that provide opportunities for students to ask and address questions, participate in discussion, critique multiple explanations, and recognize multiple solutions lead to deeper conceptual understandings of scientific phenomena than traditional teaching methods (e.g., NASEM, 2019).

THE ISE INSTRUCTIONAL MODEL

Engage	Students ask questions about a phenomenon that engages their curiosity and provides a purpose for why they study this problem.
Explore 1	Students collect data to use as evidence for their problem.
Explain 1	Students analyze data and use data as evidence to construct arguments to address questions and consider solutions.

ISE in Practice

Engineer 1	Students define a problem, design, and build a solution to meets specific design constraints.
Explore 2	Students collect data to use as evidence to evaluate their first build (solution).
Explain 2	Students analyze and use data to construct arguments to address questions and revise their solution .
Engineer 2	Students revisit their problem, design and build a second solution that provides an improved or efficient design.
Explore 3	Students place and collect data to use as evidence of the effectiveness of their solution.
Explain 3	Students analyze data and use their data as evidence to construct arguments and determine solution effectiveness.
Educate	Students synthesize key ideas from designs and data to educate local stakeholders about their solution and local implementation.

STUDENT OUTCOMES

Pretest

Posttest

Grade	Category (max score)	Mean	SD	Mean	SD		
Grade 9	Overall (19)	10.86	3.32	12.86	3.27		
(<i>n</i> = 66)	Scientific Argument (9)	5.44	2.18	6.24	2.08		
	Science - Other (7)	4.53	1.29	5.18	1.20		
	Engineering Design (3)	0.86	0.88	1.45	0.96		
Grade 7	Overall (19)	8.40	3.81	12.66	2.97		
(<i>n</i> = 73)	Scientific Argument (9)	3.89	2.47	6.60	1.98		
	Science - Other (7)	3.89	1.40	4.88	1.08		
	Engineering Design (3)	0.62	0.79	1.18	0.84		
Both groups made statistically significant improvements (p < .01) from							

pretest to posttest in all categories. In this final DBR cycle when we added additional Explore, Explain, Engineer phases, students had statistically significant improvements in the Engineering Design pre-posttest task.